Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea

نویسندگان

  • Ernesto Pérez-Rueda
  • Julio Collado-Vides
  • Lorenzo Segovia
چکیده

We have addressed the distribution and abundance of 75 transcription factor (TF) families in complete genomes from 90 different bacterial and archaeal species. We found that the proportion of TFs increases with genome size. The deficit of TFs in some genomes might be compensated by the presence of proteins organizing and compacting DNA, such as histone-like proteins. Nine families are represented in all the bacteria and archaea we analyzed, whereas 17 families are specific to bacteria, providing evidence for regulon specialization at an early stage of evolution between the bacterial and archeal lineages. Ten of the 17 families identified in bacteria belong exclusively to the proteobacteria defining a specific signature for this taxonomical group. In bacteria, 10 families are lost mostly in intracellular pathogens and endosymbionts, while 9 families seem to have been horizontally transferred to archaea. The winged helix-turn-helix (HTH) is by far the most abundant structure (motif) in prokaryotes, and might have been the earliest HTH motif to appear as shown by its distribution and abundance in both bacterial and archaeal cellular domains. Horizontal gene transfer and lineage-specific gene losses suggest a progressive elimination of TFs in the course of archaeal and bacterial evolution. This analysis provides a framework for discussing the selective forces directing the evolution of the transcriptional machinery in prokaryotes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and identification of halophilicbacteria from Urmia Lake in Iran

Halophiles are in all three domains of life: Archaea, Bacteria and Eucarya. Halophilic microorganisms in addition to form major part of life biodiversity can have many biotechnological applications. The objective of this research is isolation and identification of halophilic bacteria from Urmia Lake in Iran and the study of its bacterial biodiversity. After sampling of brines from Urmia Lake fr...

متن کامل

Identification and Genomic Analysis of Transcription Factors in Archaeal Genomes Exemplifies Their Functional Architecture and Evolutionary Origin

Archaea, which represent a large fraction of the phylogenetic diversity of organisms, are prokaryotes with eukaryote-like basal transcriptional machinery. This organization makes the study of their DNA-binding transcription factors (TFs) and their transcriptional regulatory networks particularly interesting. In addition, there are limited experimental data regarding their TFs. In this work, 3,9...

متن کامل

Evolutionary history of the TBP-domain superfamily

The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyses, we examine the distribution and evolutionary history of the TBP domain, a member of the helix-...

متن کامل

Comparative genomics of DtxR family regulons for metal homeostasis in Archaea.

The DtxR family consists of metal-dependent transcription factors (DtxR-TFs) that regulate the expression of genes involved in metal homeostasis in the cell. The majority of characterized DtxR-TFs belong to Bacteria. In the current work, we applied a comparative genomics approach to predict DNA-binding sites and reconstruct regulons for DtxR-TFs in Archaea. As a result, we inferred 575 candidat...

متن کامل

DNA-binding proteins and evolution of transcription regulation in the archaea.

Likely DNA-binding domains in archaeal proteins were analyzed using sequence profile methods and available structural information. It is shown that all archaea encode a large number of proteins containing the helix-turn-helix (HTH) DNA-binding domains whose sequences are much more similar to bacterial HTH domains than to eukaryotic ones, such as the PAIRED, POU and homeodomains. The predominant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational biology and chemistry

دوره 28 5-6  شماره 

صفحات  -

تاریخ انتشار 2004